Math is the extension of common sense

What makes math? Isn’t it just common sense?

Yes. Mathematics is common sense. On some basic level, this is clear. How can you explain to someone why adding seven things to five things yields the same result as adding five things to seven? You can’t: that fact is baked into our way of thinking about combining things together. Mathematicians like to give names to the phenomena our common sense describes: instead of saying, “This thing added to that thing is the same thing as that thing added to this thing,” we say, “Addition is commutative.” Or, because we like our symbols, we write:

For any choice of a and b, a + b = b + a.

Despite the official-looking formula, we are talking about a fact instinctively understood by every child.

Multiplication is a slightly different story. The formula looks pretty similar:

For any choice of a and b, a × b = b × a.

The mind, presented with this statement, does not say “no duh” quite as instantly as it does for addition. Is it “common sense” that two sets of six things amount to the same as six sets of two?

Maybe not; but it can become common sense. Eight groups of six were the same as six groups of eight. Not because it is a rule I’d been told, but because it could not be any other way.

We tend to teach mathematics as a long list of rules. You learn them in order and you have to obey them, because if you don’t obey them you get a C-. This is not mathematics. Mathematics is the study of things that come out a certain way because there is no other way they could possibly be.

Now let’s be fair: not everything in mathematics can be made as perfectly transparent to our intuition as addition and multiplication. You can’t do calculus by common sense. But calculus is still derived from our common sense—Newton took our physical intuition about objects moving in straight lines, formalized it, and then built on top of that formal structure a universal mathematical description of motion. Once you have Newton’s theory in hand, you can apply it to problems that would make your head spin if you had no equations to help you. In the same way, we have built-in mental systems for assessing the likelihood of an uncertain outcome. But those systems are pretty weak and unreliable, especially when it comes to events of extreme rarity. That’s when we shore up our intuition with a few sturdy, well-placed theorems and techniques, and make out of it a mathematical theory of probability.

The specialized language in which mathematicians converse with each other is a magnificent tool for conveying complex ideas precisely and swiftly. But its foreignness can create among outsiders the impression of a sphere of thought totally alien to ordinary thinking. That’s exactly wrong.

Math is like an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength. Despite the power of mathematics, and despite its sometimes forbidding notation and abstraction, the actual mental work involved is little different from the way we think about more down-to-earth problems. I find it helpful to keep in mind an image of Iron Man punching a hole through a brick wall. On the one hand, the actual wall-breaking force is being supplied, not by Tony Stark’s muscles, but by a series of exquisitely synchronized servomechanisms powered by a compact beta particle generator. On the other hand, from Tony Stark’s point of view, what he is doing is punching a wall, exactly as he would without the armor. Only much, much harder.

To paraphrase Clausewitz: Mathematics is the extension of common sense by other means.

Without the rigorous structure that math provides, common sense can lead you astray. That’s what happened to the officers who wanted to armor the parts of the planes that were already strong enough. But formal mathematics without common sense—without the constant interplay between abstract reasoning and our intuitions about quantity, time, space, motion, behavior, and uncertainty—would just be a sterile exercise in rule-following and bookkeeping. In other words, math would actually be what the peevish calculus student believes it to be.

A citation from Ellenberg’s “How Not To Be Wrong…” book. Kinda liked it.

Advertisements

I'd like to know your thoughts about it

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s